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Time Correlation Functions of a One-Dimensional
Infinite System

Toshio Niwal-2
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We investigate the time evolution of a simple one-dimensional system with
an infinite number of particles. We calculate some time correlation functions
and show that they behave asymptotically as 1/V7.
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1. INTRODUCTION

Let Z be a “‘one-dimensional” net formed by the intersection of two helices
with opposite pitch wound on an infinite cylinder. The sites of Z are labeled
by integers m € Z. Let (%, T, ) be a system of infinitely many particles on the
“lattice” Z with discrete velocities, namely, the particles are on the sites of Z
and jump each unit of time in one of the four directions of the lattice, suffering
collisions with each other in such a way that the particle number and the total
momentum are conserved during a collision. This system is similar to the
one introduced by Hardy er al.‘V This system is also essentially isomorphic to
the one-dimensional hard-point system with two colors whose particles have
integral positions and velocities v of unit magnitude |v| = 1 (Section 2.3).

In Section 2 we describe the model in detail and define the time evolution
mapping T and the equilibrium measure p.

In Section 3 we establish some fundamental properties of the system.
We also show there that the system has a factor which is isomorphic to a
Bernoulli system. So the system has positive entropy. The notion of funda-
mental path introduced there plays an essential role in the later investigations.

In Section 4 we calculate the time correlation functions. Their orders of
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decay are 1/4/7, the same for all values of the density, and their coefficients
depend analytically on the density.
The system is a K-system, as was shown by Aizenman.®®

2. DESCRIPTION OF DYNAMICAL SYSTEM (Z, T, n)

2.1. Let Z be a “one-dimensional” net as is defined in the introduction.
To define the time evolution of the system rigorously we represent Z as the
quotient space of Z2 under the group G of shifts of Z2 generated by g, where g
is a translation of Z2 by the vector (—1, 1). Let P = {v,, v,, v3, v,}, Where
v, = (1,0), v, = (0, ), v3 = (-1, 0), and v, = (0, —1).

Let

Z={X|X: ZxP-{0,1}

For any (a,v)eZ x P, X(a,v) = 1 means that there is a particle with
velocity v at the site a.
Let

Zy = {Xo = Xjaxe|X €%}
Then naturally we have

r~]]%

acZ

2.2. Now let us define the time evolution mapping T of the phase space
Z. The mapping T is made up of the ‘““free motion” T, and the “collision”
C:T=C-T,.

T, is merely a translation of &':

(ToXXa,v) = X(a — v,v) for V(a,v)eZ x P
C is defined by the interaction mapping ¢ of &5,
Zy = {Xo|Xy: P—{0,1}} ~ 2%

[We identify a X, € Z; with the subset {v € P| Xo(v) = 1}.]
We define ¢ by ¢({v1, v5}) = {v2, va}, $({va, v4}) = {1, s}, and otherwise
¢ maps identically. Using this mapping ¢, we define the collision C as follows:

(CX)o = $(X0), X,eZix %,

2.3. The obtained dynamical system (%, T, ) with an invariant homo-
geneous probability measure p (we define it later precisely) is similar to the
one introduced by Hardy et al.®

For the following investigation it is conveneint to reformulate (%, T, )
as follows.
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Let
R ={s,d, 0, O}

We identify each space %, with the space R x R as follows:
Let f [resp. g] be a mapping from 2®:%2 [resp. 2%s?4] to R such that

S{vi}) = 5, f({va}) = d,f($) = 0,/({vy, v2}) = O [resp. g({vs}) = d, g({vs}) =
s, g(#) = 0, g({vs, v4}) = O]. We have

Z, ~ 2%a¥ x 2007 ~ R x R
9Qf

By these identifications the phase space Z is identified with the space (R x R)%,
which we denote again by Z,

Z =R x R?3{(n, ru)lnez
The time evolution mapping T = C-T, can be written as follows: For
X = {(l, ra)}
ToX = {(Z,), 7))}
where (I, r) = (lpy1, Fm—1) and
CX = {(ln, rm)}
where
(s, d) if (n,1rm) =(d,s)
(s 1) =<(d, ) if (I, ra) = (s, 4)
(s Im) otherwise

The invariant probability measure p that we consider is the product
(Bernoulli) probability measure on (R x R)?, p = (u ® po)?, where y, is
the measure on R such that uy(s) = ue(d) = p(1 — p), po(8) = (1 ~ p)?,
o(®) = p?; here 4p denotes the density of the system.

Remark. The dynamical system (Z, T, u) represented in this way is
isomorphic to the hard-point system with two colors whose particles have
integral initial positions and velocities v of unit magnitude |v| = 1, if we
identify the states § and ©.

3. FUNDAMENTAL PROPERTIES OF THE DYNAMICAL
SYSTEM (Z, T, p)

3.1. From the special properties of the time evolution mapping T, we
can easily observe the following properties.
1. If we identify the states s and d (this identification is compatible with
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the time evolution T), then the obtained factor dynamical system is nothing
but the ideal gas, that is, a system with no interaction. More precisely, we
have the following:

Proposition 1. Leth: R — R = {i, 6, ©} be the mapping i(s) = A(d) = «,
h(6) = 6, h(®) = O, and Z = (R x R)% Let T be the transformation de-
fined at any X = {(J,,, Ffn)} € Z by

TX = {(I, Fa)}
where (I, 7)) = (In.1, Fm_1). Then we have
hT =T-h
where i = (h @ )2 & — Z.

Remark. The factor dynamical system (Z, T, &) [z = h(w)] is isomorphic
to a Bernoulli system. Thus the system (%, T, 1) has a positive entropy.

2. Along the time evolution the states on the even sites (ls,, For) Of the
initial configuration do not interact with the states on the odd sites
(lsm 4 15 Fomr+ 1) Of the initial configuration.

3.2. Now we consider the diagram of the time evolution of the configura-
tions X of Z. Take an initial configuration X; we then describe the diagram
of the time evolution of X as in Fig. 1. Here X = {(l,,, r»)} is taken to be for
m=—8,.,4,68l g=rg=1l,=L=rg=8l_¢ =r_s=ry=1=
Iy = d; and the other [, and r,, are 6 or ©.

Ytime
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In Fig. 1 solid (resp. dotted) lines show that along these lines the states s
(resp. d) evolve. Note that we do not describe the diagram of the states that
are initially on odd sites (/o1 1, Fom+ 1), because of the above property 2. The
diagram of the states on odd sites and that of the states on even sites are
mutually independent. Therefore from now on we consider only the states on
even sites of the initial configurations. Similarly, the diagrams of the states ¢
and © are not described explicitly because of Proposition 1.

From these lines we pick up the paths S of X as in Fig. 1; more precisely
we have the following:

Definition 1. Let X € Z and T"X = {(I{", r)} Vne Z. A fundamental
path of X is a sequence
S: {...,S_l, S0 Sl""}$ SIEZ
that satisfies (a) Vne Z, h(IP) = « or h(r{®) = ¢; (b) Spy1 — Sa = 15 (0)

n

Sn+1 — S, changes sign, that is, (5,.1 — $)(s, — 8,-1) = —1, if and only if
S, = (s,,n) is a point of intersection of the lines, A/ = h(r{’) = .
Further, s,,, — 5, = 1 (resp., = —1) if A(r{) = « [resp., AL = «].

We say that S passes through IiP (resp. ri) if s, = mand s,,, — 5, =
~1 (resp., =1).

One may regard a fundamental path as describing the motion of an
“elementary excitation.” The index of the sequence represents time.

Now we introduce an order among all the fundamental paths of X that
pass through the even (or odd) sites, namely paths with an even (or odd) s,.

Definition 2. For any two fundamental paths S and § of X, we call
S < §if the path S lies on the left of the path S, that is, if 5, < §, for all n.
Note that by Definition 1, if § « Sthen § < S.

3.3, We have the following result:

Lemma 1. Along any fundamental path S of X alteration of the states s
and d cannot take place. That is, let S pass through x{’, where x = [ or r;
then x{) = d(resp. =s) for some n, if and only if x{ = d (resp. =s) for all .

This lemma, which follows easily from the property of the collision C,
makes it possible to define the notion of the color of a path.

Definition 3. A fundamental path S of X has a color d (resp. s) if
x = d (resp. =s). We denote the color of S by ¢(S).

It is also easy to prove (cf. Refs. 15 and 16) the following ‘‘Markov
property”” of the measure p.

Lemma 2. For each neZ let Q, be the partition of & according to
whether there is a path passing through /§” or r§”. Then the partitions Q, are
jointly independent,
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This property is the main reason for the usefulness of our representation.
Notice that the sequence formed by the colors of the paths that pass through
{I§", r§™ is strongly restricted by consistency conditions. These result from
Lemma 1 and the fact that the relative order of the paths is invariant in time.

4, TIME CORRELATION FUNCTIONS

4.1. Using properties established in Section 3, we can calculate explicitly
the time correlation functions and as a consequence we can show that the
system is mixing.

Now let us compute the correlation functions

Ci(A, B; p) = (A NT7"B) — u(A)u(B)

for arbitrary cylinder sets A and B of .
As an example, we compute the simplest one. Let, for instance,

A =X = {(ln, ra}llo = 5,10 = d}

We will compute C (A, A; p).

Let Xe AN T 2"A. Let S° and S* be fundamental paths of X that pass
through /, and r,, respectively (S° < S?). Let §° and S* be paths of X that
pass through /@™ and r§®™, respectively (S° < §?). Note that /v = 5 and
ré = d, since T X € A (see Fig. 2).

Let

LX) = #Hm|0 < 2m < 2n, h(lyn(X)) = ¢
R(X) = #m|0 > —2m > —2n, h{r (X)) =
D'(X) = L"(X) — R{(X)

Here #{---} means the cardinality of the set {..-}.

A time
n
NN AN =1 /S S T xenA
NIV
0 =1
-1 N2
0 1
5: /0S5,
-2n s? 1 n XeA
—5 sl 5
A —_ %__JL a ~ Y
RPex) L™ ex)



Time Correlation Functions of a One-Dimensional Infinite System 315

Let
E. ={XeANnT *AIDY(X) < -1}
E. = {XeAnT #A|DY(X) = k}, k= -1,0,1
E, ={XeAnT A|D"(X) > 1}

These sets E_,E_,,..,E, are mutually disjoint decompositions of
A N T~27A, These sets are characterized as follows:

E = {XcANT A5 < §%
E_, = {XeANT A5 = 5%
E, = {X€A NT-2"A|5° = §°, 5! = §1
E, ={XecANnT 2A|S? = §%
E, ={XeAnT 2A|S* < §%
Let us compute u(Ey). We define
E = {h(ly(X)) = h(ro(X)) = hlon(X)) = h(r-2.(X)) = ¢ N{D"(X) = 0}
Then
E, = AN T-2A N {D"(X) = 0}
=E N {c(5% = ¢(8% = s, c(S?) = (S*) = d}
But, under the condition E, S = §° and S = §*. Therefore
E, = En{(S°) = s, c(S?) = d}

Hence
H(Eq) = pE)({c(S°) = s, c(S?) = d}|E)
= (*u(E)
= (D’(Ao(X)) = = h(r -2:,(X)) = Hu({D"(X) = 0})
= 22#(A)2P o
Here we have used the independence of {A{(l,(X)) = - = A(r_ (X)) =  and
{D"(X) = O}.

The other probabilities can be computed similarly. They are given by
Hw(E_) = p(A)Y’P< 4
HE_1) = pu(A)e(S°, SHP_,
w(Eo) = p(A)%(S°, §%e(S*, SHP,
wEy) = p(A)%(S?, SO)P,
M(E+) = ﬂ(A)2P>1



316 Toshio Niwa

where we use the notations

Py = p({D"(X) = k})

and
o (2 i oS) = eS)
«(S, ) = {0 otherwise
To compute p(E_,) note that as ¢(S°) = sand e(§*) = d, s0o E_, = ¢
and [L(E_l) = 0.

Finally, we get

Con(A, Aj p) = pE) + pE_y) + -+ pE,) — p(A)?
= w(AP?*(3Py — P_; — Py)

Here we haveused P._, + P_, +--+ P., = L.
The probabilities Py,

P = p({D(X) = k)

— Jan—1=ju itk n~1—j~k
= Z n-1Ci1P'q P q
7. 0<i,j+ksn—1

where p = 2p(1 — p)and g = | — p, appear in the calculation of the central

limit theorem for the sum of a Markov chain. These asymptotic values are
(see Refs. 7 and 8)

1/2

P, ~ (4pgmn)~ as n-—>ow
Therefore
Can(A, A; p) ~ (4pgmn)~*2u(A)?
4.2. In the similar way we can get the following result:

Theorem 2. Let A and B be cylinder sets defined on even (or odd) sites
simultaneously. The time correlation function of A and B behaves asymp-
totically as 1/v'n. More precisely,

Can(A, B; p) ~ C(A, B)(4pgrm)~"2  as n— 0

where p = 2p(1 — p) and ¢ = 1 — p. The coefficient C(A, B) depends only
on A and B and can be calculated explicitly.
When C(A, B) = 0 the sign ~ means

Can(A, B; p) = o((4pgmn) =)

We note that Cy,, . 1(A, B; p) = 0 and the general case is easily reduced to
these cases by property 2 of Section 3.1.
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